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~AbstracL A model describing the dynamics of the synaptic weights of a single ieumn 
performing Hebbian leaming is described. The neumn is repeatedly excited by a set of inpit 
patterns. Its response is modelled as a continuous, nonlinear function of its excitation We study 
how the model forms a self-organized representation of h e  set of input panems. The dynamical 
equations are solved directly in a few simple cases. The model is studied for random pattems 
by a signal-to-noise analysis, and by inimducing a partition func!ion and applying the replica 
ippmach As the nwi~ber of patterns is increased a fint-order phase transition occm when 
the neuron becomes unable to remember one pvtem but leans instead a mixture of very many 
patterns. The critical number of pattems for this transition scales as Nb, where N is the number 
of sympses and b is the d e p e  of nonlinearity. The leading order finite-size corrections are 
calculated and compared with numerical simulations. It is shown how the representation of the 
input patfems leamed by the neumn depends upon the nonlinearity in the nwron's response. 
Two types of behaviour can be identified depending on the degree of nonlinearity: either the 
neumn learns to discriminate one palfern fmm all the others. or it will learn to discriminate a 
complex mixture of many of the pattems. 

1. Introduction 

The mechanism first outlined by Hebb [ I ]  is widely accepted as an important for" of 
learning in neural systems. He proposed that when the activation of a neuron coincides with 
that of an input neuron, the synaptic weight from the input neuron increases. In this paper 
we will study a simple mathematical model of a single neuron which takes the mechanism 
of Hebb very literally. Our aim is to model the behaviour of neurons with many synapses 
(104-105), so that statistical mechanics can be used In the model a neuron l e a s  in an 
unsupervised fashion-the neuron responds to a stimuli and the synaptic weight is changed 
proportionally to the stimuli and the response. A regularizing mechanism is incorporated 
to prevent the weights from growing too large. The response of the nenron to its inputs is 
described by a simple nonlinear function. 

A neuron leaming in this way, when repeatedly presented with a set of input stimuli, 
develops a self-organized representation'of those stimuli. The precise nature of this 
representation is important in determining what processing functions can be computed by 
networks made of these neurons. We find that the representation which the neuron leams 
is strongly dependent upon the shape of the activation function-that is the function which 
determines the neuron's response for a given excitation. If the activation function is linear, 
the neuron leams a statistical property of the ensemble of pattems. When the activation 
function is sufficiently nonlinear, the neuron becomes a discriminator, learning to distinguish 
one pattern from the others. 

Over the past ten years, a number of authors have considered unsupervised Hebbian 
leaming in neurons with lin& activation functions, see,' for example, [2-51. In a model 
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very similar to the one considered here, but with a linear activation function, Oja [21 found 
that the neuron learns to discriminate the maximal eigenvector of the correlation matrix of 
the patterns (this is described in section 2.1). Using those neurons as building blocks, Oja 
and others have developed neural network architectures which perform principal component 
analysis [GI, a well known method of dimensional reduction. What is new in our work is 
that we study the model with nonlinear response functions and also that we apply methods of 
statistical mechanics to the model. Our results show that neurons with nonlinear activation 
functions leam very differently from linear neurons. Instead of learning to find the principal 
component of all of the pattems, they learn to discriminate one pattern from the others. 

Experimental measurements of the shape of the activation function are still an open 
and active area of research. It is known from measuring the spike frequency against the 
injected currents (so called F-Z plots) that the activation functions differ in different cell 
types 191. However, these measurements are still too crude to be able deduce the form of 
the activation function. In this paper we have therefore modelled the activation function 
as simply as possible, that is as a power law with a threshold. This can only be regarded 
as a first approximation as it does not incorporate any saturation of the firing for large 
post-synaptic potentials. However, with random patterns the vast majority of patterns will 
produce very small excitations, where the activation function may be well described by a 
power law. Much of the behaviour of the neuron will depend on the response of the neurons 
to these small excitations. In particular, if the activation function is initially concave then 
these small excitations will act like a ‘noise’, the magnitude depending on the power of 
the nonlinearity. While if the activation function is convex then the neuron will leam to 
discriminate a mixture of these patterns. Thus the form of the activation function might 
provide an important clue as to the nature of the neuron function. More complicated 
activation functions will give rise to more complicated behaviour. For example, neurons 
with sigmoid activation functions might learn to discriminate between a mixture of a few 
patterns. In the conclusion we will discuss how some of the calculations presented here can 
be extended to sigmoid activation functions. 

The model presented here also has an interesting statistical interpretation. As already 
mentioned the Oja model learns the principal component (technically this is only true for 
patterns drawn from a distribution with zero mean). That is the synaptic weights become 
the vector which maximizes the second moment of the pattern distribution. In our model 
the weights learn to maximize higher moments of the pattem distribution. This is discussed 
in more detail in section 2.2. Although, in this paper, we will discuss this model mainly as a 
neuron model, with very minor modifications the results can equally well be applied to this 
statistical interpretation. An important difference emerges between the principal component 
analysis performed by the Oja model and the higher moment analysis. In the Oja model 
all eigenvectors of the correlation ma& are stationary solutions, but they are all unstable 
in the direction of the principal eigenvector. Thus the Oja model will, with probability 
one, find the maximum eigenvalue. In the case of higher moments there exist many local 
maxima so that a nonlinear generalization of Oja’s model is no longer guaranteed to find 
the global maximum. 

The model is solved using two approaches: the dynamical equation is studied directly, 
and a partition function is introduced which has the same stationary states as the dynamical 
equation. For two patterns and for patterns with a single correlation between them, the 
dynamical equations can be solved exactly. From this one finds that the ability to leam 
to discriminate one pattern from many others is determined by the degree of nonlinearity 
of the activation function and the correlation between patterns. A type of signal-to-noise 
analysis is used to study the dynamical equations when many random patterns are learned. 

A Priigel-Bennett and J L Shapiro 
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We identify two transitions as the number of patterns is increased When only a few patterns 
are shown to the neuron, it will leam to discriminate one of the patterns from all the others. 
As more patterns are shown the neuron increasingly feels the influence of the other patterns 
and becomes less well ‘tuned’ to the pattern it has leamed. The first transition occurs when 
the neuron experiences so many patterns that it is no longer able to leam a new pattern, 
although if it has leamed a pattern it will retain a ‘memory’ of it. As the number of patterns 
is increased there is a second transition where the neuron loses any memory of a pattern. 

The case of many random patterns is also studied using a replica analysis of the partition 
function. This analysis confirms the results obtained from the signal-to-noise analysis. It 
also allows us to study the effects of introducing additive stochastic noise. These effects are 
similar to those caused by introducing many random patterns. Again the noise produces a 
deterioration in the ability to leam a pattern and two transitions analogous to those already 
described can be identified. The replica calculation is unusual as the energy function is not 
quadratic. As a consequence the critical number of patterns required for the neuron to be 
unable to remember a single pattern scales as N b  where N is the number of synapses and 
b measures the degree of nonlinearity in the activation function. This is the first time, to 
the authors’ knowledge, that a replica calculation has given rise to this type of scaling. 

The leading finite-size effects, forb < 4, in the case of many random patterns have been 
calculated using signal-to-noise analysis. For small nonlinearities, the size of these finite- 
size effects are very large and will be noticeable even in large neurons. The theoretical 
calculations are compared with numerical simulations and found to agree, although the 
simulations are only possible on relatively small systems as the number of patterns that can 
be learned rapidly becomes prohibitively large. 

The organization of the paper is as follows. In the next section the model is defined and 
its biological motivations are discussed. In section 3 the dynamical equations are solved, 
first in the case when the neuron is presented with orthogonal patterns (in section 3.1). 
and then for two comelated patterns and for many patterns each with the same correlation 
(section 3.2). In section 4.1, the signal-to-noise analysis for many random patterns is 
developed. In the second part of this section, the solution to the signal-to-noise analysis 
is discussed. The next section describes the mean-field solution for the partition function. 
Section 5. I contains the solution when only a few patterns are present. Section 5.2 contains 
the solution for many random pattems where the replica approach is used. These results 
confirm those obtained from the signal-to-noise analysis. To test for replica symmetry 
breaking we examined the solution with one step of replica breaking, this is described in 
the appendix. No evidence for replica symmetry breaking was found, suggesting these 
results are exact. In section 6 the finite-six corrections and simulations of the model are 
briefly described. The final section discusses some of the biological implications of the 
results obtained in the preceding sections. 

2. The model 

In this section we present the’model of the neuron. First, we give the the dynamical equation 
describing Hebbian learning. The biological motivation is briefly discussed, although most 
features of the model are standard in neural modelling. The only novel aspect is our form 
for the activation function, In the second part of this section, the partition function for this 
model is described, and the relationship between it and the dynamics is discussed. 
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2.1. The dynamical equations 

We consider a neuron which receives stimuli through N synapses with coupling weights 
denoted by wir where i labels the N different synapses. The stimuli experienced by a real 
neuron mmes in the form of a train of spikes. We use the standard assumption that the 
the inputs vary sufficiently slowly in time that we can replace the spike train by a single 
continuous valued quantity, the ‘pre-synaptic activity’, related to the frequency of the spike 
train. We will treat the pre-synaptic activities across all the axons at any one time as a 
pattern vector. The pre-synaptic activity experienced by axon i when pattern p is present is 
denoted by 5:. Each pattern produces a post-synaptic potential, V’, given by the weighted 
sum of the input activities 

A Priigel-Bennett and J L Shopiro 

The post-synaptic potential will excite the neuron which then fires according to its activation 
function, A(V”).  We assume that there is some threshold 4 below which the neuron does 
not fire and above which the neuron fires according to a simple power law, that is 

where b measures the degree of nonlinearity of the response. 
The synapses are assumed to modify according to the learning rule 

wi --f wj = wi + rA(VP) (er  - V”wi). (2.3) 

When the learning rate, r,  is very small, so that wi hardly changes during a single 
presentation of all the pattems, we can make the (adiabatic) approximation, that after all 
the patterns have been presented once, the synaptic weights change by an amount 

P 

(2.4) 

The first term is a ‘linear Hebbian’ term-the change in weight is propoctional to the 
input activity and the cell activation. The second term prevents the synapses growing 
unboundedly by tending to normalize the weights. In order to see this, we observe that 

When the neuron has finished learning (8w = 0). the weight factor will be normalized. 
Furthermore as r E, A(VF)V’ is always positive (strictly only for4 0) IwIz will always 
move towards one and thus the steady-state solutions will always be stable to perturbations 
in the direction of w. 

Learning is unsupervised in the sense that there is no teacher. The system starts with 
some (non-zero) initial weights, then equation (2.4) is applied until the system converges. 
The neuron forms a representation of the pattern set. This depends on the initial weights, 
the form of the activation function and the propehes of the patterns. 
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Thedynamical equation (2.4) with A ( W )  = V’ has been solved by Oja [2]. He showed 
that the weight vector learns to recognize the eigenvector with the largest eigenvalue (i.e. 
the principal component) of the correlation matrix M;j = E,, &“$,f. This is a propew of 
the ensemble of pattems. w e n  the principal component is unique, the weight vector after 
learning will ‘be independent of the initial weights. A lot of work has still be done on this 
model, for a review see [IO, pp 204-71. ‘The model in this paper.can be viewed as &I 
extension of Oja’s model to the nonlinear activation function (2.2). .As we shall see &is 
nonlinearity can radically alter what the neuron learns. 

2.2. The partition function 

We have also studied a partition function which has the same stationary states as the 
dynamical equation (2.4). This allows us to average over random pattems to find the 
probability distribution of weights after learning. We solve this’ moilel in the framework 
of mean-field theory. A further bonus of this approach is that it allows us to study the 
influence of additive noise in the dynamical equations. We consider the p d t i o n  function 

where fi  is the inverse temperature and 

where it is now more convenient to define V p  = wjN. Using this definition of V’ 
rather than (2.1) one finds that the dynamics imply that at the fixed point Iw*Iz = N. The 
dynamics is not affected by this redefinition. 

It might not be obvious that the partition function and the dynamical equation (2.4) 
are related. Indeed, the energy defined in (2.7) is not the integral of the right-hand side 
of equation (2.4). The difference is that in the partition function fonnulation, the weights 
must lie on the unit sphere, whereas in the dynamical equation the weights are merely 
attracted to the unit sphere. However, these equations (2.6) and (2.7) do indeed have the 
same stationary states as the dynamical equation (2.4) with (2.2). To see this, we note that 
the corresponding Langevin equation is given by 

where Pi j  is the projection operator 6ij - wiwj /N which imposes the constraint lwlz = N. 
A(V’) is~the activation function given in equation (2.2) and vi is a random Gaussian noise 
(orthogonal to ut) with variance gZ related to fi  by the usual Einstein relationship, 2fiu2 = r .  
Although equations (2.4) and (2.8) are identical for t)i = 0, the partition function describes 
the equilibrium behaviour for (2.8) only in the limit r + 0 ~d when 1201~ = N. However, 
the lattercondition will be satisfied for stationary solutions and the stability is found to be’ 
independent of r so the partition function will correctly give the stability of the stationary 
solutions of (2.4). 

The statistical interpretation of our model is made clear by considering the energy 
function. Principal component analysis can be viewed as finding the unit vector w which 
maximizes the second moment 
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This is equivalent to minimizing the energy function 

A Priigel-Bennett and J L Shapiro 

E O( -E(<”. w)’ 
P 

(2.10) 

subject to the constraint (w( = I. The corresponding Langevin equation is the Oja model. 
The most natural generalization to higher moments is to find the vector w which maximizes 

I<” . WIn 
P 

or minimizes the energy 

(2.11) 

(2.12) 

The Langevin equation for this model is the familiar dynamical equation (2.8) but with 

A(V’) = sgn(VP)  IV”lb (2.13) 

where b = a - 1. For positively correlated patterns this model is identical to the neuron 
model discussed throughout this paper. With very small modifications all the calculations 
presented in here can be applied to this higher moment model. 

3. The stationary solutions of the dynamical equations 

Here we examine the stationary solutions of the dynamical equations. Clearly this only 
makes sense in terms of the adiabatic approximation (2.4) rather than equation (2.3) where 
the stationary solutions correspond to small cycles. The stationary solutions W* satisfy the 
equation 

Sw = r A(V@)(CP - v%*) = 0 
P 

(3.1) 

and are thus independent of the learning rate, r .  We will examine two simple cases where 
the model can be solved exactly. In the first part of this section we will consider orthogonal 
patterns. In the second part we will examine two correlated pattems and, in a very special 
case, many correlated patterns. 

3.1. Orthogonal patterns 

For orthogonal pattems there are stationary solutions at w = .$*/pl for each pattem CP. 

There are also stationary solutions corresponding to mixtures of pattems but these turn out 
to be unstable when the activation function is nonlinear (more precisely when b > 1). To 
see this, it is useful to examine the dynamical equations in the directions of each of the 
pattems. Resolving in the direction 5’ equation (2.4) becomes 

For simplicity we consider normalized patterns so that CP . 5“ = SPJ, and we set the 
threshold, $, to zero. The mixed solutions are of the form w* = &.. CP/Z / i ;  where 
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S, is any set of n of the pattems. We first examine the case of a two-patterns mixed 
state w* = (6' + c2) / f i .  We consider perturbation in the direction 6w = E'$ + c2C2. 
Substituting w = w' + 6w into the equations for 6Vfi and only keeping terms up to first 
order in E' and e2 

which has an eigenvalue of r(b - 1)2"-b'/2 in the direction 6' - c2 and an eigenvalue 
-r2'3-b'/2 in the direction 6' + 6'. If we consider perturbations in the direction of an 
unleamedpattem, 5" say, then to leading order6V" = r ( ~ " ) ~ - r 2 ( ' - ~ ) / ~ c " . ~ T h u s ,  forb 1, 
the kading order term is SV" =.-r2"LbJ/2ev and the mixed fixed point is stable in the 
direction of the unlearned patterns and in the direction bisecting the two patterns but unstable 
in,the direction towards either of the patterns. Forb  = ~ l ,  SV" = 0 as is the eigenvalue 
in the direction 6' .- c2 so that all mixtures of patterns are marginally stable. For b < 1, 

~ S V "  = r(c")b so the two-pattern mixed state is unstable in the direction of any unlearned 
pattern. The generalization- to the n-pattern mixed solution is quite straightforwad The 
matrix for all P of the 6Vrs has three distinct eigenvalues. A non-degenerate eigenvalue 
in the direction bisecting the n leamed patterns 

= ->n(1-bl/2 (3.4) 

a (P - n )  degenerate eigenvalue in the direction of each of the unlearned pattems (for 
b s l )  

and an (n - 1) degenerate eigenvalue 

A3 = r (b  - l)n"-b'/2 (3.6) 

describing mixing between the learned pattern. Forb  > 1, this last eigenvalue is positive 
indicating that this mixed fixed point is unstable in the direction of any of the patterns. The 
only stable states are the single-pattern states. As in the two-pattem case, the perturbation 
in the direction of an unlearned pattern, E", is, to leading order, 6V" = r(eY)b-rn(1-bJ/2c", 
so as b becomes less than one the n-pattern mixed state becomes unstable in the directions 
of the unlearned patterns. The only stable state for b < 1 is the therefore the P-pattem 
mixed state. 

As discussed in section 2, when A ( P )  = Vfi equation (2.4) corresponds to Oja's rule. 
In this case the only stable solutions are those in the direction of the principal component 
of the matrix M i j  = E, E,!$. For orthonormal pattems, all the pattems and all mixiures 
of pattems have the same maximum eigenvalue of one. Thus, the principal component is 
degenerate and any mixture is also a principal component. For sufficiently many random 
pattems the principal component will be unique. 

3.2. Two correlated patterns 

Although the analysis for orthogonal patterns provides some insight into how neurons 
l e e ,  in general patterns will be correlated with each other. This situation is much more 
complicated and can only be solved completely for two pattems. We therefore consider 

. ,  
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,"l=d.P 

0 0  

Figure 1. The curves show the p"t-synaptic potential. V' = w . L?, against the ~ m l a t i o n  
E =e' -e2 between two p a w s  of equal length forb = 2. The continuous (broken) line shows 
the stable (unstable) srationary states. As long as the cmlalion is not tcm great (c fl), the 
neumn leams near one of the panems and can disuiminate tenveen them. For c > P, the 
neumn leams the symmetric mix" and cannot distinguish the patterns. 

two correlated patterns E' and E2. For simplicity we will assume that both pattems have 
the same length, one, although the generalization to patterns of different lengrhs is quite 
straightfonvard. We look for solutions of the form 

w = us' + u p  63.7) 
and we will assume 1wI2 = 1. (As demonstrated by equation (25) this will hold at the 
fixed point which will be stable to perturbation parallel to w.) Then u2 + u2 + 2uuc = 1, 
where c = E '  . E2, and 

SV' = ru2(1 - cz)(A(V')  - (u/u)A(Vz))  
6V2 = -ruu(l - c2)(A(V') - (u/u)A(V2)).  

Thus the condition for w to be a stationary solution is 

or writing 5 = u/u then the stationary value, c*, satisfies f(r) = 0 where 

(3.9) 

(3.10) 

The stationary solutions forb  = 2 and @ = 0 against c are shown in figure 2. The condition 
for the stationary solution to be stable is f '(5') c 0. One notices that < = 1 is always 
a solution and corresponds to the symmetric mixed state w c( 5' + 5'. This mixed state 
becomes unstable when b z b', where 

(3.11) 

Forb > b* two new stable solutions emerge one close to each of the patterns. Equation 
(3.11) can be solved for c*, the correlation above which the mixture of the two patterns is 
stable. This is given by 

b - 1 + 6' - &/+' +4b(b+ 1) c* = - 
b + l  (b  + (3.12) 



Statistical mechanics of unsupervised Hebbian learning 235 1 

This analysis can be extended to a greater number of patterns but the number of 
stationary solutions rapidly increases and they cannot, in general, be examined analytically. 
Nevertheless in the special case when all the patterns have the same mutual correlation, 
the stability of the completely mixed state can be studied. For P patterns with mutual 
correlation c one finds that the mixed state w OL CL=, E' is stable to perturbations in 
the direction of one of the patterns provided c z (b  - I)/(b + P - 1) (where @ = 0). 
From this analysis we can understand what would happen in the case of simple clusters. 
Assuming the patterns were generated by making a random perturbation away form a set 
of orthogonal (or randomly generated) prototypes so that within each cluster the correlation 
between patterns would be c, while the correlation betyeen pattems in different clusters are 
zero (or l / n ) .  Then the neuron could leam to recognize the centre of one of the clusters 
if c > (b - l)/(b + p - I) ,  where p is the number of patterns in that cluster, or it would 
leam to recognize an individual pattem if c < (b - 1)/(b + p - 1). 

4. Signal-to-noise analysis for many random patterns 

In the first part of this section we derived the steady-state equation for a neuron which has 
a macroscopic overlap with one of the patterns and a microscopic overlap with all the the 
other patterns. The second part of this section discusses the solutions of this steady-state 
equation. 

4.1. Signal-to-noise calculation 

We consider input activities, e/' which are independently chosen from a distribution with 
zero mean and variance l / a .  The patterns will therefore have an average length of one 
and will have correlations of order l / a .  These correlations will prevent any pattem from 
being learned perfectly. As more and more patterns are shown the neuron will eventually be 
unable to remember any single pattern but will leam some mixture of very many patterns. 
We will assume that there is one pattem with a macroscopic correlation (of order one) with 
the weight vector. This pattern will be treated as the 'signal'. The other P - 1 patterns are 
assumed to have microscopic correlations (of order 1 fa) with the neuron. These patterns 
will be treated as 'noise'. Note, however, that this noise is not real stochastic noise-the 
neuron behaves deterministically-but comes from the large number of random patterns. 
In the derivation given in the following we do not attempt to give a full justification for 
every step. The results derived here will also be derived using mean-field theory where the 
approximations we more easily controlled. 

We consider the case of a neuron that has a macroscopic overlap with pattem 5' and 
microscopic overlaps with all the other patterns. The weight vector can be resolved into 
a component in the direction of pattern 5' and a component in an orthogonal direction x 
which will depend on all the other patterns 

w = u s '  +ux (4.1) 

where 5' and z are unit vectors and where 5' . z = 0. We assume that 1wI2 = 1 so that 
U* + U* = 1. Setting Sw = 0 in equation (3.1) it is easily verified that 
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where AY = <’ . <’ are independent Gaussianly distributed random variables with variance 
l / f i  and where C is the normalization factor 
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The direction z has a small dependence on each of the patterns E’. Separating out the part 
that depends on e’, 

(4.4) 

where 

is essentially the overlap between two independently chosen, random unit length N-vectors. 
Thus the A s s  are independent Gaussian variables with variance l / a .  The term (A:)’ i s  
of order 1 / N  and will be neglected. 

The dynamical equation in the direction <’ is 

SU =e‘ - S W  = x A ( V I r ) ( e P  *E1 - u V ” ) .  
Ir 

(4.6) 

For I*. # 1,  

V’ = e’ * (U<’ + U X )  = uAY + uA: + uA(V’)/C (4.7) 

where we have used (4.4). The last term depends on V’ and can be expanded out ad 
infinitum. However, the magnitude of this term is of order Nh/* and thus it will be smaller 
than the other terms provided b > 1. Thus we need to keep only the first few terms to find 
the la rge4  behaviour. Substituting equation (4.7) into equation (4.6) we find 

G u = A ( u ) ( l - u * ) + ~ A ( u A ~ + u A ~ + -  C 
w 

C ((I - U ’ ) A ,  ’ -uuA: - 

Using 1 - U’ = U’, and expanding to first order in A(uf l ) /C,  the last term becomes 

To find the stationary equation for U in the large N limit we replace the sum over I*. by its 
average value. This is straightfonvard as A: and A! an independent Gaussian variables. It 
i s skpler to  make the change of variables ZI = f i ( u A 1  +uA,) and zz = f l ( u A 1  -uAz). 
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Both z ,  and z2 are Gaussianly distributed random variables. After averaging the leading 
order term equation (4.9) becomes 

v u P k / N b C  (4.10) 

where 

and where 

A ( Z )  = (2 - K ) ’ e ( Z  - K )  

(4.11) 

(4.12) 

and K = @/a is the rescaled threshold When K = 0, k = Zb-’r(b + 1/2)/& (for 
integer b, k = (2b - 1)!!/2). Similarly we find the avera e of the constant C, defined in 
equation (4.3). which, to leadmg order, is equal to ?-- k P I N b .  Thus in the limit N + co 
equation (4.8) becomes 

su = U (A(u)v -U-). (4.13) 

In deriving this equation we used the value of z at the fixed point so this equation is strictly 
only valid at the fixed point. The fixed point eqktion is found by putting 6u = 0. Squaring 
we find 

(1 - U 2 ) A 2 ( U ) / U 2 . =  ctk (4.14) 

where ct = P / N b .  We will discuss the solution to this equation in detail in the next part of 
this section.  we can also extract the finite-size corrections from this formalism. This will 
be discussed in section 6. 

4.2. Solutions of the signal-to-noise equation 

In the kmainder ofthis section we discuss the solutions to equation (4.14). Provided ct is 
less than some critical value, equation (4.14) has two solutions: a stable solution U* and an 
unstable solution ii (U* > 2): The stable solution corresponds to the point where the neuron 
has learned the pattem E’.  There is a small shift away from the pattem caused by the other 
pattems. The unstable solution corresponds to the point where. the attraction towards the 
pattem stored at U = U* is exactly balanced by the attraction towards the totally mixed 
solution at U = 0. In other words, E is where the strength of the signal equals that of the 
noise. Thus ii~ measures the size of the basin of amaction to the fixed point U*: 

As more pattems & added and ct increases towards cyc, U’ decreases and E increases 
until they coalesce at etc. Above (I~ only the U = 0 solution exists and the neuron fails to 
recognize any pattem. This transition point is given by 

. ,  

(4.15) 

at which point U* = ii = ,/-. These, fixed points are shown in figure 2 plotted 
against (I = P / N b  forb = 2 and K = 0. Increasing the threshold K decreases the noise and 
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Figure 2. The fixed paints of the signal-to-noise equation, equation (4.14) against U = PINb. 
The sable solution, U*,  is shown m the full curve; the unstable solution. ri, is shown as the 
broken curve. Here, b =2, Y = 0 and the phase transition occurs atu = 116. 

Figure 3. The critical capaciry (re for a neumn to I” all memory of a pattem against the 
rescaled threshold Y =+/a for b = 2,3,4 and 5. Note that the number of pattems scale as 
N b  so that the curves for different b should not be compared 

thus increases the capacity. Figure 3 shows cyc against K for different values of b. (Note 
that a! = P / N b  so the curves at different values of b cannot be directly compared-for any 
reasonable size of neuron the number of patterns that can be shown to the neuron before it 
becomes overloaded increases substantially with b.) 

a, no memory of any 
pattern can be retained. This is true even if the weights were set to be equal to the pattern 
before leaming. However, a neuron will only leam a pattern in the first place if the weights 
at the start of learning were withii the basin of attraction of the stored pattern state U’. A 
glance at figure 2 shows that this could be unlikely, since z i  determines the size of the basin 
of attraction. For example, for the parameters in that figure, if a! is 0.1, then the initial 
weights would have to have an overlap with a pattern of almost 0.5 in order to learn that 
pattern. Assuming no prior knowledge of the patterns to be learned, this will almost never 
happen. Thus, we address the question: how small must a! be in order for the neuron to 
learn a pattern from random starting weights. 

The neuron will leam a pattern only if the initial overlap of the weights with that 
pattern is larger than E. Thus, there is another bansition which occurs when i is greater 
than the initial overlap of the weights with all pattems. This could be deemed the ‘learning’ 
transition because it separates the system which can learn a pattern, from one which will 
not forget a learned pattern but cannot leam. To compute where this transition occtm, 
consider the overlap between the initial weights and the pattern with the largest overlap 

The hansitions just described repment ‘forgetting’-for a 
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with those weights. Call thii quantity Vow. The magnitude of Vom will depend on the 
initial distributions of the input activities and the synaptic weights. Fuahexmore it will 
be sample dependent. Assuming the same Gaussian distribution for the initial weights as 
for the patterns, the average value, faa", will asymptotically go like The 
corresponding typical number of patterns pc that can be shown to a neuron before it is 
unable to leam a new pattem is given by vo-(Fc) = ri(pc). This implies an asymptotic 
result pc = kN(lnRN)*-'. This asymptotic result is not terribly useful in finite systems, 
however, because convergence to it is only logarithmic in N .  Figure 4 shows p c / N  against 
N computed numerically for b = 2,25,3 and 3.5 and with K = 0. The learning transition 
occurs for pc much larger than N. It increases with b because the nonlinearity damps out 
noise. 

F i r e  4. The w"mn can leam '0 rewpizea panem f" mdm staning weights only if the 
number of panems is less than Pc. This plot shows &IN against the number of synapses N 
for I = 0 and forb = 2 2.5, 3 and 3.5. The initial mrrelaticns between ule pattern veculrs and 
weight vector are Gaussian dislrihuted. 

The effect of K on p c / N  is shown in figure 5, for fixed N. Again increasing b reduces 
the amount of noise and thus increases the ability of the neuron to learn a new pattem. Note 
that the neuron will only leam if VTax z K so for K > 0 there will typically be a minimum 
number of patterns that must be presented in order for the neuron to leam. 

Figure 5. Fc/N against the rescaled threshold Y 

5. 
for N = lOOW and b = 2 , 3 , 4 a n d  

In summary, the neuron either learns to distinguish one pattern from another, or it learns 
to distinguish some mixed state. As the number of random patterns P increases there. are 
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two transitions. The first occurs at pc z kN(lnkN)b-’ .  Below this point, the neuron can 
leam one of the pattems from random initial starting weights. Above this point but below 
the second transition point Pc = a,Nb, the neuron will not forget a pattern which it has 
leamed, but is unlikely to leam from a random start. Above the second transition, the 
neuron learns a mixture of very many patterns. We have not examined this mixed state 
as for random pattems there is nothing in the distribution of the pattems for the neuron 
to learn. For more complicated distributions the nature of the mixed state will be more 
important. 

We have seen that increasing b and K increases both ffC and pc. However increasing 
b and K will slow the rate of learning. To see this, we consider learning a single pattem 
from a small initial overlap Vo. The time required for the overlap to grow to macroscopic 
size is proportional to rb(Vo - For random initial weights VT’ is of order 

Thus, for random patterns, the time taken will scale as N(b-1)/2.  The effect of 
having many random pattems will be to introduce a ‘friction’4ike term which will slow 
down the learning. For a neuron to learn quickly it is advantageous to choose b and K to 
be as small as possible. Of course they must be chosen sufficiently large so that the neuron 
is able to leam new patterns and this will depend on how many random pattems the neuron 
experiences and on how noisily the neumn behaves. 
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5. Mean-field theory for Hebbian learning 

In section 2.2 we introduced a partition function which describes the distribution of stationary 
solutions of the dynamical equations. Here we will study this partition function using mean- 
field theory. This is done in two stages. In the first part of this section, we examine the 
case when P I N h  is negligible and the partition function self-averages. In the second part, 
we consider the case when P = aNb for arbitrary (Y where the replica approach is required. 
The calculations presented here resemble those of Amit et al for the Hopfield model [ll- 
131 and Gardner’s calculation for the capacity of the spherical perceptron [14-16]. We 
therefore give only a brief outline of the calculation. Throughout this section we assume 
b z 1. The limit b -+ 1 cannot be taken because terms of order N have been ignored when 
compared with terms of order N b .  When A(VP) = V”, the partition function is just that 
of the spherical Hopfield model. This is also the partition function which corresponds to 
Oja’s rule. We will not discuss the mean-field theory for this case, because the only stable 
solution for this model is the principal component of the correlation matrix of pattems. 

The significance of the calculation presented here is that it validates the signal-to-noise 
analysis. The resulting equation, (5.54). and the signal-to-noise equation, (4.14). are the 
same. In addition, it provides a more general formalism which allows that result to be 
extended to the consideration of more than one macroscopic overlap and to additive noise. 
The replica calculation is of interest as the energy function is not quadratic and the position 
of the first-order phase transition scales as N b  in contrast to the Hopfield and perceptron 
calculation where the energy is quadratic and the position of the first-order phase transition 
scales linearly with N .  

5.1. A few random patterns 
The partition function in equation (2.6) can re-written as 
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with 

1 
b + l  U(VP) = - (v~-&+l  e(vf i -$)  (5.2) 

so that u’(VP) = A(V+), the activation function. Introducing the integral representation for 
the delta functions 

and 

then the sums over the different synapses i all decouple and we can replace wi and by 
a representative weight and pattern w and e@, respectively. The average of the partition 
function can then be written as 

where C is a constant, (. . .) denotes averaging over the patterns, and 

Performing the integral ovei w 

Since the pattems are independent (.$fie“) = W ”  and 

thus 

In the large N limit the integral in the partition function (5.5) is dominated by its saddle- 
point values: To find the saddle point we minimize with respect to A, t’ and.V”, that is 
we seek solutions to the saddlepoint equations 

(5.10) 
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These equations are satisfied when 

A Priigel-Bennett and J L Shapiro 

1 A =  8 t” = AV” V” = -A(V”) A 1 - C”(V”)2 
(5.11) 

where we have used u‘(V”) = A(V”). Substituting back into equation (5.9) and assuming 
the partition function self-averages, we find that the free energy is given by 

(5.12) 

where V” satisfies the equation 

(5.13) 

The only solutions to this equation are permutations of the solutions 

v = (V*, v,, . .. , V”, 0.0,. ..). (5.14) - ” 
Substituting (5.14) into equation (5.13) and taking 4 = 0 we find V, satisfies 

(1 -nv,”)v,”-’ = T. (5.15) 

Calculating the free energies for these solutions one finds the single-pattern solutions 
V” = VIS”.” are the ground states. To examine the stability of these solutions we look at 
the Hessian matrix 

(5.16) 

The Hessian matrix has three distinct eigenvalues at the n-pattern mixed solutions (for 
n > 1): a nondegenerate eigenvalue 

AI = (1 - b)Vj-’ + 2 p n V ,  (5.17) 

an eigenvalue with degeneracy P - n, 

A2 = Vi-’ (5.18) 

and an eigenvalue with degeneracy n - 1, 

A3 = (1 - b)V,b-’. (5.19) 

For b > 1 this last eigenvalue, which is associated with fluctuations of anisotropy in the 
space of the n learned patterns, is always negative. Thus the mixed solutions are all 
unstable to fluctuation in the direction of any of the pattems. The only stable solutions are 
the single-pattern solutions. 

When T = 0 and @ = 0 we retrieve the symmetric solutions of section 3.1 with 
V, = 1 / 6 .  Note that for T = 0 the eigenvalues A2 and A3 in this section are identical 
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to those in section 3.1 up to a constant factor of -r. Whereas, from (5.17), 11 + 00 as 
T -+ 0 reflecting the strong constraint ]wiz = 1 in contrast to section 3.1 where 11 is finite 
reflecting the fact that the condition Iw*Iz = 1 is a consequence of the dynamics. 

As T increases, V, decreases until it reaches a critical transition temperature, T,, at 
which point the only solution is V" = 0 for all p. This behaviour is reminiscent of the 
behaviour described in the previous section when the neuron was overloaded with patterns. 
For the single-pattern solution the critical temperahwe is given by 

(5.20) 

at which point VI decreases to (b  - l ) / ( b  + 1 )  and 11 goes to zero. The fraction of the 
m-sphere explored by the synaptic weight is (V@)*: when T + 0 this fractional 

volume goes to zero as a. 
5.2. Many random patterns: P = aNb 

When the number of patterns is of order aNb the partition function will no longer self- 
average so we use the replica trick. The n-replica partition function is 

1 - r 

We divide up the pattems into two sets: those with macroscopic overlaps (of order one) 
with the synaptic weight vector which we label p = 1 , 2 , .  . . , s and those with microscopic 
overlaps (of order l/n) which we label /I = s + 1 ,  . . . , P. The partition function can 
then be written as 

(5.22) 

where we have used u(g)=-(E?-4) 1 b+l e(%-+) v P . a  

b + 1  Jiii 
u(V ) (5.23) 

and where again we have introduced a rescaled threshold K = @/@. To integrate out the 
microscopic overlaps we introduce the integral representation for the delta function 

- N-(b+1) /Z-(vP.a 1 - K ) b + l e ( v P . o  - K) = ~ - ( 6 + 1 ) / 2 -  -*,a - 
b + l  

(5.24) 
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To perform rhe average over 6: for f i  = s i- 1, . . . , P we expand the exponential, and use 
(6:) = 0 and ((e,?)*) = 1, then 
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where, in the last step, we used Ci(w:)* = N and 

(5.25) 

(5.26) 

We impose (5.26) using the integral representation of the delta function 

n 8 ( q U b  - wrw!') = n / - dpab exp iN pub qab - w3u:)] (5.27) 
neb N i  a<b 2xJN 1 o<b ( i 

and similarly to impose the constraint on the V% and the wfs 

then the sums on i and the sums on .E decouple. 
Thus the n-replica partition function can be written as 

x exp(NG(pab,qab,Aa, Vp,a,tpta ) I  
where C is a constant and 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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and 

(5.33) 

To find the free energy we make the usual ansatz that the macroscopic order parameters 
are symmetric in the different replicas 

pab = ip q n b = 9  Va < b  

Aa iAV’s” = V@ t’” = it” Va. 

Then the n-replica partition function becomes 

where to first order in n 

(5.35) 

With 

and 

(5.36) 

(5.37) 

The f“s in GI can be decoupled and the integral over and Fa performed Then 

where Dz is the Gaussian measure defined in equation (4.11). Using the trick of writing 

(5.39) 
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and expanding in powers of N‘L-b’12 we find after some algebra that, to first order in n and 
neglecting terms of order PNL1-3b’12, 

A Prrigel-Bennett and J L Shapiro 

(5.40) 

Decoupling the weights in Gz and evaluating the integrals we find 

Using the replica trick we find the free energy per synapse is given by 

(5.42) 

where we have exchanged the order of the h i t s  to allow us to evaluate the n-replica 
partition function using the saddle-point approximation. Thus the free energy is given by 
the extremum of 

where 

Using the saddle-point equations 

(5.43) 

(5.44) 

(5.45) 

we find 

and thus the free energy (up to an additive constant) becomes 

(5.47) 
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The last two saddle-point equations 

(5.48) 

imply 

V’ = (1 - q)j3 A(V’) (5.49) 
’=I 

(5.50) 

where again we have use. u‘(VC) = A(V’). Putting CI = P / N b ,  then 

where we have used the change of variables x = &ZI + e& and y = G . 1  - 
&ZZ and where A ( x )  = i’(x). 

For zero noise, j3 -+ CO, we find q -+ 1 while j3(1 - q)  remains finite. Expanding to 
first order in e, we find 

(5.52) 

this is just -aP2k/2, where k is defined in equation (4.1 1). Thus the ‘ked-point equation 
for q becomes 

When there is only a single pattern with macroscopic overlap, then equations (5.49) ahd 
(5.53) imply 

This is identical to equation (4.14) derived using the signal-to-noise. analysis. 
There is also a solution V +  = 0 for all p .  In this case the synaptic weight vector aligns 

itself with a mixture of many patterns, but does not have a macroscopic overlap with any 
one of them. For this solution p(1-q)  = I/@. At zero temperature this phase becomes 
the global ground state at a~ = (b2 - l)b-1/kb2b. For b = 2 and q5 = 0 this state is 
the ground state for a > 1/8. Note, however, even for CI c D L M ,  the basin of attraction 
of the V@ = 0 state is much larger than that of the singlepattem state, resulting from the 
nonlinearity of the activation function. 

The average energy per synapse, E, for this model is given by 
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The entropy per synapse, s is given by 

A Priigei-Bennett and J L Shapiro 

s = + log[l - q ] .  (5.56) 

This has been normalized so that s = 0 implies the whole of the w-sphere is equally 
probable. Again when T + 0 the fractional volume of  the N-sphere visited by w for a 
typical sample goes to zero as 3. 

We have looked for replica symmetry breaking by examining the mean-field equations 
assuming one step of replica symmetry breaking. This is presented in appendix A. No 
evidence for replica symmetry breaking was found. We therefore postulate that the mean- 
field solution is exact 

6. Finite-size effects and simulations 

In the signal-to-noise analysis described in section 4.1 we obtained the fixed-point equation 
(4.14) by keeping only the leading order terms in N. To find the dominant finite-size 
corrections we must keep the next largest terms. What these terms are depend on the size 
of the nonlinearity b. For b e 3 the next largest terms in (4.9) are of  the form 

CA~(UA: + V A ~ ) A ’ ( U A :  + V A ~ )  (6.1) 
P 

which are of order N‘b-1)/2 relative to the leading order terms. Keeping only these terms 
the fixed-point equation (4.14) becomes 

where 

kl = / Dz A’(z)A’(z). 

When K = 0, kl = 2‘3b-3)/2br(3b/2)/fi. Equation (6.2) again gives a first-order phase 
transition but at a reduced (Y which depends on N. The position of this phase transition, 
a,(!), against the number of synapses, N, is shown in figure 6 for the case b = 2 and 
$ = 0. In the large N limit this transition point cu,(N) converges to the infinite system 
result (4.15). The next largest terms again depend on the b. Forb = 2 these terms are 
of order 1/N relative to the leading order term. They include terms similar to those just 
discussed but also fluctuation terms. 

We have performed simulations of this model. Starting from w = 5’ the dynamical 
equation (2.4) was iterated until the weights effectively stopped changing. The final overlap 
between w and E’ against IY = PINb was computed. Figure 7 shows a typical simulation 
with b = 2, K = 0, r = 0.1 and N = 256. In this case ZOO0 iterations were required before 
w effectively stopped changing. We also show the theoretical curve for the large N limit 
(4.14) as well as the theoretical curve (6.2) for the leading order finite-size corrections. We 
see that in the finite system the sharp transition has been smoothed. We find that above the 
transition the final overlap with the original pattern always remained positive and was of 
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Figure 6. This figure shows lhe leading order 6nite-siz& correction in the critical Capacity adN) 
against the number of synapses N p l o w  on a logarithmic scale. The m e  is plotted forb = 2 
and Y = 0. The upper dotted line shows the N -+ 00 limit. Also shown are estimates of adN) 
made f" simulations on systems of size N = 64,128 and 256. 

order l / a .  This suggests the the mixed state is not unique but depends on the starting 
position. 

In figure 6 we also show numerical estimates of &(N) for b = 2, K = 0 and N = 64, 
128 and 256. The point and the ermr bars show where the simulation curve cross the point 
V' = 0.8, 0.6 and 0.4. We have used these crossing points as the curves round off at lower 
overlaps due to the residual overlap. The simulations are in reasonable agreement with 
the theoretical results although a better analysis of the higher order correction would be 
required to establish the theoretical results more firmly. We note that for realistic sizes of 
neurons the finitesize effects are very important However, these hite-size effects depend 
on b and will be smaller as b is increased. 

a 

F g r e  I .  This plot shows a simulation of the overlap, V', between lhe synaptic vector w and 
patkm e' against a &r iterating the dynamical equations until the synaptic weights effedively 
stopped changing. Each point rep"& 50 samples. The ermr ban show lk statistical estimates 
of the e m n  in the mean. The simulation was performed with b = 2 K = 0, r = 0.1 and 
N = 256. The full curve shows the uleoreticat prediction in UIE- infinite volume limit while the 
broken curve shows the leading order finibsize conections. 
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7. Conclusions 

We have demonstrated that neurons with nonlinear activation functions can leam to perform 
very different functions than neurons with linear activation functions. Depending on the 
size of the nonlinearity b and inter-pattem correlations, a neuron will either leam a single 
pattem or some mixture of pattems. When the neuron’s final state is close to a single 
pattem. it has learned to recognize that paitem in the presence of the other patterns. When 
it learns to the mixture, it cannot recognize any individual pattem. The nature of the mixed 
state was not investigated here, although in the case of two or several pattems with single 
correlation, the mixed state is the symmetric mid-point of the pattems. From the signal-to- 
noise analysis we solved the dynamics with many random patterns. Here we found that, for 
a given nonlinearity b and threshold K = @/a, the neuron could leam a random pattem 
provided the number of random patterns was below some critical number. Increasing the 
nonlinearity and the threshold increases the critical capacity, however, it also slows down 
the speed of learning. Finite-size corrections were also obtained from the signal-to-noise 
calculation. The theoretical predictions were compared with simulations on finite systems 
and found to be consistent. By introducing a partition function describing the s ta t ionq 
states of the neuron we were able to reproduce and extend the signal-to-noise results, thus 
giving more confidence in their validity. The mean-field calculation is of interest as the 
energy function is not quadratic and the position of the first-order phase transition scales as 
Nb rather than N as found in the Hopfield model [12] or in the perceptron [14]. 

We have not examined what happens above ac as there is nothing in the distribution 
of random pattems for the neuron to leam. For inputs drawn from a more complicated 
distribution the behaviour above ac would be more interesting. An indication of what we 
might expect is provided by the clustered patterns discussed in section 3.2. In this case as 
the number of pattems in the cluster is increased above a critical number the neuron stops 
learning to recognize a single pakem but instead learns to recognize the cenhe of one of 
the clusters. 

This model is a highly idealized version of a real neuron. Some of the 
neurophysiologically implausible features make very little difference to the result. For 
example, in some situations it would be more realistic to restrict the weights and pattems 
to positive values. An appropriate redefinition of the learning rule (2.4) and the threshold 
4 could model this. In addition, we have assumed that the learning rule is linear and the 
nonlinearity is due to the activation function. However, certain combinations of nonlinear 
leaming rules with the activation functions would have the same form as the learning 
equation. In this sense, the distinction does not exist; it does not matter whether the 
nonlinearity is in the activation function or in the leaming rule. Many relevant features of 
real neurons such as the shape of their activation function and the mechanism they use to 
prevent their synaptic weights from growing unboundedly are still open areas of research. 
We would hope that this work might provide a useful link between the characteristics of a 
single cell and its functionality in a larger network. 

As mentioned in the introduction, for real neurons there is no reason to believe that 
the activation function takes the form of a simple power law. Indeed, the firing rate of 
all neurons must saturate at some point as the excitation is increased, so a sigmoid is 
probably more realistic. It would be straightforward to extend these results to sigmoids 
or other functional forms. Any part of the activation function can be approximated by a 
simple power law and the analysis given can be applied to these parts separately. In the 
derivation of the critical capacity the part of the activation function associated with the 
microscopic post-synaptic potentialAenoted by A( V”)-was treated separately f” the 
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part associated with the macroscopic post-synaptic potentials. The noise depends only on 
a very small part--of order l l f l - o f  the activation function around the average post- 
synaptic potential of the unleamed pattems and will be independent of the shape of the 
activation function elsewhere. Provided that the small excitation part of the activation 
function can be described by a power law, then the noise term--.uk in equation (4.14)- 
will remain unchanged. The macroscopic part of the activation function, A(V'), can be 
substituted into equation (4.14) no matter what form it takes. If the activation function is 
sigmoid then a mixture of a few random pattem may be stable, although whether such a 
mixture is leamed will depend on the structure of the input world and how it is experienced 
by the neuron. 

In the brain, neurons function as part of a netwotk and will interact. One role of 
the interactions could be to equipartition the pattems among the neurons. Imagine a 
collection of non-interacting neurons with random initial weights. These neurons would 
leam grandmother cell representations of the input pattems. Unfortunately, some pattems 
would be represented by many neurons, while others would be recognized by none at all. A 
more favourable representation would have every pattem represented by the same number 
ofneurons. This could be accomplished by inhibitory connections between nearby neurons. 
This would form a competitive network, where the activation of a neuron suppresses the 
firing of its neighbours (for a review of competitive networks see [IO, ch 91 and [17, pp 
63-70]), In such a network each neuron would tend to leam to discriminate a different 
pattern 

We have seen that for this model the shape of the activation function is important in 
determining what a neuron computes. Although this model involves many simplifications, 
it is fairly typical of the models used to describe neurons. With no teacher, this model 
can leam to discriminate a single pattem from many others. Of c o m e  real neurons would 
operate as part of a complex interacting neural network. The real potential for useful 
processing would come from this higher architecture. Nevertheless, much can be leamed 
by studying a single neuron in isolation. 
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Appendix. Replica symmetry breaking 

In the signal-to-noise analysis of section 4.1 the noise was found to be proportional to 

Since .A(VP) is nonlinear this noise will be very dependent on the position of the synaptic 
weight vector w. As a consequence we might expect that there would be a number fixed- 
point solutions close to each pattem and this would allow for the possibility of replica 
symmetry breaking. To investigate this we consider one step of replica symmetry breaking 
U la Parisi [NI. The matrix qUh is divided up into n p  blocks of sizes 8 x 6'. The diagonal 
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elements qaa are zero. The other elements of the blocks on the diagonal are 91 while 
the elements of all the other blocks are 90. Physically, 41 is a measure of the thermally 
averaged overlap between replicas in the same state while 90 is the thermally averaged 
overlap between replicas in different states; 0 measures the probability of two replicas 
beiig in different states. We assume that the matrix pub has a similar structure as qob while 
replica symmetry holds among all the other macroscopic order parameters. 
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Using this ansatz 

and similarly for the other terms in qub and pub. After some algebra we find 

where the extremum is taken with respect to all the order parameters and where 

Performing the extremization with respect to pa, p1, A and t’ we find 

We have looked for solutions to the saddle-point equations for VJ’, 90. q, and 0 with 
0 2 90 2 q1 2 1 and with V’ and 0 in the interval from 0 to 1. The only solutions 
which are consistent with all the saddle-point equations are the replica symmetric solutions. 
This indicates that there are not a sufficient number of local minima to break the replica 
symmetry. 
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